REMOTE SENSING DROUGHT MONITORING AND ASSESSMENT BASED ON MODIS DATA IN MONGOLIA

ODBAYAR Mishigdorj
Head of Remote Sensing department of IRIMHE.

ELBEGJARGAL Nasanbat
Chief Technologist of National Remote Sensing Center of Mongolia.
Email: n_elbegjargal@yahoo.com

Chang Sheng
Assistant Professor. Division for Digital Agriculture, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences.
Email: changsheng@radi.ac.cn

Bulgan DAVDAI
Remote sensing specialist. *Email: nd_bulgan@yahoo.com*

Battsetseg TUVDENDORj
Remote sensing specialist
CONTENT

- Introduction
- Specifications of Mongolia
- Climate change in Mongolia
- Disaster situation
- Drought Monitoring
 - Operational RS works
 - Ground measurements
In the recent years, climate change has been one of our major problem.

Furthermore, drought is the single most important weather-related natural disaster.

Therefore, we need to use spatial techniques of Remote Sensing for drought monitoring
Mongolia is a landlocked country located in Central Asia. The highland with an area of 1,565,000 km2 and a population of 3 million. The country is bordered by Russia to the north and China to the south, east and west.

- **Land locked**
- **Different Natural zones**
- **Severe Continental Climate**
 (4 seasons, long winter, short summer)
- **Economy based on Agriculture/Animal Husbandry** (> 40 mln livestock, pasture > 90%)
- **Less industry (mining)**
- **Low density of human population**
 3. million/1,565 mln sq.km
 50% - in capital city (UB)
- **Few bigger cities and towns**

Mongolia nature and geography
Mongolia has one of the coldest climates in the world, with temperatures dropping below -25$^\circ$C for several months each year. And but summer is hot and not so long. Therefore Mongolia is known to the world as a country of "Blue Sky."
CLIMATE CHANGE IN MONGOLIA

CURRENT SITUATION:

Annual mean Air temperature change trend since 1940
Increased in 2.1 degree C

Annual precipitation change trend since 1940
Decreased in 7%
Major Disaster in Mongolia

- **Drought, Dzud, (Fire)**
 - Dzud - harsh winter (cold + heavy snow)
 - **Drought** occurs every year affecting 30 – 70% of total area => inadequate pasture, hay and fodder.
 - Drought in summer followed by dzud in winter => livestock losses.

Dust storm

Dzud (Winter storms)

Wildfire

Winter storms
DROUGHT MONITORING

The intensity, frequency and area of natural hazards/natural disasters are increasing (L. Natsagdorj et al., 2004)
Pasture & Drought monitoring using satellite data

National Remote Sensing Center – responsible for Satellite data receiving, processing and servicing (**Aqua, Terra/MODIS, Soumi-NPP, NOAA, MetOp-B, FY-2**).

MODIS/NDVI data, 250m, 10 daily

Due to space limitations, the diagrams showing MODIS/NDVI data, Biomass and pasture, and MODIS/Drought index data are not transcribed here. The text states that these data are collected and processed by the National Remote Sensing Center, responsible for satellite data receiving, processing, and servicing from various platforms including Aqua, Terra/MODIS, Soumi-NPP, NOAA, MetOp-B, and FY-2.

Biomass and pasture, NOAA 19 data, 10 days

Similarly, the diagrams showing Biomass and pasture data and NOAA 19 data are not transcribed here. The text indicates that these data are also part of the satellite monitoring program managed by the National Remote Sensing Center.

MODIS/ Drought index, 10 days

Again, due to the nature of the content, the diagrams showing the MODIS/Drought index are not transcribed. The text highlights the comprehensive nature of the monitoring system, covering various satellite data types and indices for effective pastoral and drought management.

For a full understanding, these visual representations would be essential, but they are not included here.
<table>
<thead>
<tr>
<th>Month</th>
<th>1st 10 day</th>
<th>2nd 10 day</th>
<th>3rd 10 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VCI Drought index

1st 10 day

2nd 10 day

3rd 10 day

May

June

July

August
Drought mapping was made combined by 3 regions which has more than 50% correlation including forest, steppe, desert steppe. The correlations between RS Drought index and SPI index calculated by meteorological parameter were different in various natural zones separately.

Natural regional made from mapping of land cover classification by MODIS data in 2010.

<table>
<thead>
<tr>
<th>Natural zones</th>
<th>Soil moisture 10cm vs RS indices</th>
<th>AI vs RS indices</th>
<th>SPI vs RS indices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>r >45 (NDDI, VHI, TCI...)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steppe</td>
<td>r >45 (VSWI)</td>
<td>r >49 (TCI)</td>
<td>r >46 (TCI, VSWI)</td>
</tr>
<tr>
<td>Desert Steppe</td>
<td>r >45 (VHI)</td>
<td>r >45 (TCI, VHI)</td>
<td>r >46 (TCI)</td>
</tr>
</tbody>
</table>
Combined by Drought indices

Forest

Steppe

Desert steppe

Combine
Field measurement

The joint field work.
1. Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences
2. Meteorological institute of Mongolia

Total: 2000 km
Fixed filed area

150 km * 2 = 300 km * 2 days = 600 km
Field Measurement

Field work for drought

Before cutting Biomass

After cut Biomass

Soil moisture
Drought Monitoring system from RADI of CAS China
Drought Monitoring maps of Mongolia

June, 2017

July, 2017

1st August, 2017

2nd August, 2017

3rd August, 2017
THANK YOU FOR ATTENTION!