Title of paper: Development of a Big Data Analysis System (Case Study: Unemployment Statistic)

Abstract
Technology has evolved over time. One of them is the transfer of printed media into online media. Nowadays, you can find news and job vacancy faster than ever, they can be obtained by surfing internet. This also make them one of the valuable data to help explain phenomena in real world. BPS Statistics Indonesia has taken advantage of this data, but still using manual techniques. This means that BPS has to search and collect news items one by one, taking a lot of precious time and effort. Web scraping technology can help to solve this problem. Web scraping can crawl into the news site and job vacancy sites and automatically collect information into a web-based system. With the APIs of Google Trend and Twitter, additional data can be obtained to further help explain the phenomena. This research is aimed to develop a web system that is able to monitor google trend and twitter, scraping for news and job information. In addition, news that has been collected can be investigated with a particular keyword search. Researchers used System Development Life Cycle (SDLC). To test the system, researchers use black box testing and System Usability Scale (SUS). The results of the test, indicate that the system can run well and provide for an acceptable solution.
I. Contents

I. Contents... 2
II. Introduction.. 3
III. Developing a Big Data Analysis System ... 4
 A. Methodology.. 4
 1. Web Scraping News and Job Vacancy... 4
 2. API for Index Google Trend and Twitter ... 4
 3. Quality Control and Limitation ... 6
 4. Challenges... 7
 5. Administration Source vs Big Data ... 7
 6. Integration with current official statistics .. 8
 B. Developing System ... 9
 1. Analysis System .. 9
 2. Design System ... 10
 3. System Implementation ... 13
 4. System Security ... 18
 5. System Evaluation .. 19
IV. Conclusion... 21
V. References.. 22
II. Introduction

Unemployment statistics are an important indicator of economic activity and needed for policy makers. Unemployment Statistics explains the condition of the labor force in a country. The results of these statistics are data such as Tingkat Pengangguran Terbuka (TPT)/ Open Unemployment Rate and Labor Force. Unemployment itself is a problem that must be resolved immediately. Long-term unemployment take a toll on both sociology and economically Nichols, Mitchell and Linder (2013). In Indonesia, this statistics are handle by the Employment Sub-directorate of the BPS Statistics Indonesia.

The Employment Sub-Directorate of the BPS Statistics Indonesia carried out a Survey called Survei Angkatan Kerja Nasional (SAKERNAS) to obtain Indonesia employment statistics. SAKERNAS is held twice a year in February and August. The reason the BPS Statistics Indonesia chose to do SAKERNAS in February is because in that month is the main harvest season (thus expected to have more employment), while August is the drought season. SAKERNAS was conducted by interviewing selected household members.

To maintain data quality, the approach taken by the BPS Statistics Indonesia is to check the consistency between variables, compare data with the previous year, and compare data with phenomena that occur in the community. The first two can be managed using entry program and statistic analytic. However, to compare data with phenomena that occur in the community, it must be known what phenomena is happening.

Phenomena that occur in the community are known by gathering news on that month. Currently news collection is still done by our staff manually, by collecting news from the newspaper and doing a search one by one on the internet. This causes the gathering of news to take a lot of time and effort. Therefore, a system to help gather news that available in various online media automatically is needed. In addition, searching system needs to be implemented into the system which will make it easier to see phenomena.

In addition, there are employment data that still have not been caught from news gathering. Research conducted by Joonas Tuhkuri in 2014 showed that the Index Google Trend can be used to predict future unemployment. There’s also another research by Bokányi, Eszter & Lábszki, Zoltán & Vattay, Gábor (2017) that predict the employment and unemployment rates from twitter daily in US. The recent technology made job vacancy more easily found via job vacancy site such as Jobstreet, Jobs.id, and etc. Therefore this research also seeks to capture data such as job vacancies, Index Google Trend, and twitter.
III. Developing a Big Data Analysis System

A. Methodology

1. Web Scaping News and Job Vacancy

Web scraping is the activity of collecting data using various methods other than using the API and human intervention. Web Scrapeing is usually done by writing automatic programs that query the web server, request data, and decipher the data to extract into information (Mitchell, 2015).

Scrapy is a robust web framework of Python for scraping data from various sources. It was released on June 26, 2008 and continues to grow until now. (Dimitrios Kouzis-Louis, 2016). The advantage of Scrapy compared to other frameworks are capability to understand broken HTML, organized code, and a large and helpful community which responsible for maintance, development, and quality control of the framework.

2. API for Index Google Trend and Twitter

Search Volume Index is an index produced by Google for certain word searches. Search Volume Index does not display the number of search words, but forms it into an index by comparing the number at a certain point with the highest number.

The Unemployment Rate in Indonesia is explained by an index, namely the Tingkat Pengangguran Terbuka (TPT). The unemployment rate (TPT) produced by the BPS Statistics Indonesia is obtained from the following formula

$$TPT = \frac{total\ of\ unemployment}{total\ of\ workforce} \times 100\%$$

Unemployment rate in Indonesia is produced every February and August, since February is the paddy harvest season which resulted in demand of more labor, and August is the dry season which resulted in decreasing labor demand.

To do a job search, Indonesian will use keywords such as kerja (job), lowongan kerja (job vacancy) and loker (slang for job vacancy). The results of the Search Volume Index for these keywords are as follows.
For *kerja* and *lowongan kerja*, despite having a different search volume, it has the same pattern. As for the *loker* keywords, it only began to follow the pattern in early 2015 as the slang was introduced.

The comparison between the unemployment rate produced by *Badan Pusat Statistik* with the Search Volume Index from the Index Google Trend is shown by the figure below.

It is seen that both the unemployment rate and the Index Google Trend have decreased. This is in accordance with the research conducted by Joonas Tuhkuri in 2014. Moreover Index Google Trend have the index for every month, while for Unemployment rate it is only calculated every year on February and August. The Index Google Trend can be a new appeal to help predict the unemployment rate in Indonesia.
As for using twitter data, research conducted by Bokányi, Eszter & Lábszki, Zoltán & Vattay, Gábor. (2017) who make predictions about employment and unemployment from daily rhythm twitter. In the study it was known that there was a pattern between tweets with the unemployment rate. This can be used for better decision making in unemployment.

3. Quality Control and Limitation

Data generated from the internet is certainly diverse. On news sites, for example, there are tags like <title> Title of News </title>. This <title> tag needs to be cleaned before the data is stored in the database. Using scrapy help and the some package from python from <title> The Title of News </title> we can extracted Title of News and saving it into database.

Saving date on the news site also needs attention. This is because the method of writing date is different in each site. For example, there are some sites who write dates with dd/mm/yyyy method, but there are also sites that use the mm-dd-yyyy method. So when the date is taken, each site needs to be customized to break the element of date and rearrange it using the same standard. In this study, the standard date used is dd-mm-yyyy which is the most common date writing method in Indonesia.

The problem that might occur is because the updated news site causes the web-scraping process to fail. If this happens, web-scraping must follow the development of this news site and have to update the system. But, this is usually rare on news sites, in contrast to e-commerce sites that can change their layout every month, even every week.

In addition, the use of the Application programming interface (API) is provided from the site. So that there is a possibility for a permission on the API to be changed, or even the API from the site is stopped. This is also a small possibility to occur, usually API support is stopped if the site owner goes bankrupt. However, this is rare on large sites like Google and Twitter.

Currently this research is still in the development stage as the job openings can only be obtained from certain sites such as Jobs.id, while not all job seekers use the site and may rely on other platforms. Though the selected site is the main job vacancy site, it can possibly lead to inherent bias. For now, this research is still limited in that area.

Also, Indonesia is a vast country with a variety of ethnicities, cultures and languages. Unfortunately, many Indonesians are still out of reach or have difficulties with the internet network. While the data collected in this system uses the internet, this make it impossible to measure the people who do not have internet network. Therefore, until now the results of this study have not been able to analyze up to the provincial level, but still at the national level.

On news sites, there are also issues with the news that are repeated on several websites. Besides that there are also problems regarding hoax news or fake news. This has been overcome by choosing a news site that has a credible rating. The news site chosen is a national news site and is careful enough to post news. Repeated news is expected to be overcome in further system development using similarity algorithms such as TF-IDF.
4. Challenges

The difference between each site makes web-scraping activities must use different code on each site. In addition, data cleaning needs to be done before data from the site is stored in the system database. This data cleaning process also requires special handling that is different for each site.

The amount of data collected in this system is very large. Every month there are around 60,000+ news collected and thousands of jobs. So it requires a large and reliable database in handling available data. So PostgreSQL was chosen as a database for the development of this system. PostgreSQL has no volume restrictions like other databases. Besides that PostgreSQL is also open source so there are no problems in the license.

5. Administration Source vs Big Data

The source of administrative data for employment so far has only come from a yellow card from the Dinas Ketenagakerjaan (Labour Force Agency). This card is used as a requirement to apply for jobs in government agencies. The disadvantage is that Dinas Ketenagakerjaan rarely publishes the number of yellow cards. In addition, these cards are usually not needed to apply job outside government agencies. So, some job seekers usually don't take care of it.

There is also potential administration source from tax reports that must be reported every year. However, this report usually only contains general data such as the category of labor only. In addition, this report only contains the number of people who work, not the unemployment. Which make finding the unemployment rate difficult.

SAKERNAS survey process takes a very long time. Starting from survey preparation such as determining methodology, training instructure, and etc. When the survey is finally started, it also requires a lot of man power. Badan Pusat Statistik requires thousands partner who will visit the sample household and do interview. After completing the survey process, there's need to do data processing. Badan Pusat Statistik still uses paper-based for SAKERNAS, it means that Badan Pusat Statistik need to do entry data. After that data from each district will be collecting to provincies and verified. After verified the data will be sent to data center in Jakarta. The Data still need to be processed and analyzed. This very long process cause the SAKERNAS February to start in December and finish in May.

So, Indonesia's SAKERNAS February are usually only published in May. This means there is a difference of about 3 months. Meanwhile, with Big Data such as Index Google Trend has shorter time difference. There's only 1 day data difference. This very short time difference can help predict a faster unemployment rate. In addition, on the Index Google Trend we get Search Volume Index data that can be used to view data every month, even every hour. Whereas for SAKERNAS, the data is only available in February and August. This is also the same as other Big Data such as Web Scrapping, and Twitter. The energy and time needed is far less. This will greatly help in making decisions effectively and efficiently.
6. Integration with Current Official Statistics

The use of Big Data in the Badan Pusat Statistik is still in the development stage. In 2019, Badan Pusat Statistik began collaborating with the Politeknik Statistika STIS to create a special Big Data team. This means that the Badan Pusat Statistik has begun to prepare the use Big Data for official statistics.

This is evidenced by the many studies on Big Data for Official Statistics. For example, *Kajian Indeks Harga Konsumen berbasis E-commerce* (Alifa Putri Wijaya, 2018) which examines the Consumer Price Index by web-scraping the price on e-commerce sites. There is also research on the *Pembangunan Sistem Klasifikasi Teks Berita Online sesuai Indikator Indeks Demokrasi Indonesia* (Nur Imron Suyuti, 2018), which built a classification system in the Online News Text for indicators of Indonesian Democracy Index. There is also a *Web Mining Simple Solution* (Rahmad Hidayat et al., 2017) that makes a System to facilitate analysis of the results of web mining, one of the features of the Mining Simple Solution Web is to conduct Sentiment Analysis, as was done in the study of *Kajian Analisis Sentimen Data Twitter menggunakan Metode Support Vector Machine dengan optimasi PSO dan Firefly* (Bambang, 2017) which conduct Sentiment Analysis on Twitter data to see the view or opinions on the National Examination.

The results of this study have already been used to assist in the analysis of SAKERNAS in August 2018 and February 2019. For SAKERNAS in August 2019 it has been prepared for use. With the help of Big Data team from Politeknik Statistika STIS, the system built also began to be integrated with the Badan Pusat Statistik.
B. Developing System

1. Analysis System

a) Working Business Process

This analysis is done to see the needs of a system. First interviews are conducted with subject matter to find out the process of the system running. From the results of interviews conducted, it is known that the system running process is as follows

So far, the news search process is still done manually. BPS staff will see what phenomena are obtained from SAKERNAS. Then the employee will do a news search related to the phenomenon. This search is done on the internet using Google. After a search, see if the news is found. If the news is not found, the employee must search again. If the news is found the news will be checked whether it matches the existing phenomenon. If the news is not in accordance with the phenomenon, BPS staff must search again. If the news is in accordance with the phenomenon, news will be collected in the form of files. The results of the news search are then formed.
b) Problem Identification

Afterwards, analysis and identification of all problems in the system can be carried out. The results of the analysis and identification of this problem are illustrated by the fishbone diagram below, there are 4 main problems, namely from the Human, Method, Machine and Material.

![Fishbone Diagram](image)

The Human Resources in the BPS Statistics Indonesia are limited. This is not comparable with the amount of news available which makes it inefficient and ineffective. The method used by the BPS Statistics Indonesia still uses manual methods. Search will be done one by one using a search engine. Then, the existing news will be seen whether it is in accordance with the phenomenon that occurred. This search will be done one by one and takes not a little time.

From the side of the machine. Storage of news that has been collected is still done manually, by copy-pasting. This also causes stored data to be unstructured and difficult to find again. This also makes that the news collected with a files not a database. Which can make them duplicate and abundant. For the machine, there are data on employment that still have not been caught. For example, Google trends index can be used to see unemployment in Indonesia. Twitter data, and data on job vacancies have also not been collected and analyzed.

2. Design System

 a) Business Process Proposal

 After knowing how the system works, then system design can be done next. First, the proposed business process is prepared.
First, employees will get any phenomena found in SAKERNAS. Then the employee just starts scraping by choosing the site to be scraped and the date for scraping. The system will then do scraping and save the results of scraping in the database. Employees can then search to find news and match news with the appropriate phenomenon. In addition, the system will display data from the Google trends index. The system will also display data from Twitter. Employees can then make the required reports using data from scraping results, google trends index, and data from twitter.

b) System Architecture

The architecture of the system to be built is as follows. The programming language used is the Python language version 3.5.3. The web framework used is Django version 2.0.7. The web scraping framework used is Scrapy version 1.5.1. For the design of the interface used HTML, CSS, JS and Bootstrap 4.0. To facilitate the construction of the website, Sublime Text is used.
The system built is a web-based system built using the Django framework. In UI development, various additional libraries were used. The plotly library is used to create more interactive graphics. The datatables library is used to make better tables. In addition, bootstrap is also used to help develop CSS and JS.

While in the development of the backend section, it is divided into two parts, namely, web scraping, and API. To do web scraping, use a python library called scrapy. Scrapy will browse web pages using spiders and then save the news into the database using the pipeline. Scrapy searches to get news data on online media and job vacancies on the jobsID web. The library used to access the Index Google Trend API is the pytrends library that is based on python. While the library used to access the twitter API is a tweepy library that is also based on python. In addition, additional libraries are also used to help develop the system. The django-scrapy-fire library used to connect the django framework and scrapy framework. The scrapyd library is used to run framework scrapy.

The database used in developing this system is postgresQL. PostgreSQL was chosen because of its open-source and unlimited database capacity. Django and postgresQL integration are not too difficult to do, because Django uses the concept of Object Relational Model (ORM).
3. System Implementation

a) Monitoring

Monitoring can be used to see the data that have been collected. Divided into 4 subsections, namely news monitoring, job vacancy monitoring, Index Google Trend monitoring, and twitter monitoring. Monitoring is focused on using graphics to facilitate interpretation. In monitoring the news you can see the news stored in the database. The news can also be filtered according to the sources. In addition, there are Top news tags, which are the news tags that appear most often on existing news. In monitoring there is also a graph that shows the amount of news on each media site. In monitoring job vacancy you can see the number of job vacancy stored in the database, the number of applications submitted, the number of companies offering job vacancy, cities that have vacancies, and companies that have the most applications. In monitoring the google index trend can be seen trends with certain keywords. Then it can be seen which provinces have the highest index, and what queries are related to those keywords. Finally on Twitter monitoring, you can see tweets about certain keywords. Besides that, trending topics in Indonesia can also be seen here.

Figure 10. News Monitoring
Figure 11. Job Vacancy Monitoring

Figure 12. Index Google Trend Monitoring
b) Searching

In this feature, users can enter certain keywords to do news searches. News search can be filtered on certain websites and on certain dates. Results will be displayed every ten stories. If the news produced by more than ten news, a button will appear to the next page.

c) Web Scraping

Web scraping is divided into two sub-sections, namely the scraping news section and scraping job vacancy section. On scraping news, users can choose what sites to do scraping and dates to do scraping. While on web scraping job vacancy, there is only a
button to start scraping. A log will appear to show that the scraping process has started, is running, pending, and finished. When scraping is complete, a button will appear to see the results of the scraping that has been completed. The process that occurs from web scraping is that the user will send a command to start scraping to the `scrapy` framework. Scrapy will then begin the scraping process. Then the website will check the progress of scraping every 5 seconds. When the scraping status is finished, the checking process will be stopped. Scrapy himself will start searching the web with spiders. After the data from the website is retrieved, scrapy will channel the results via the pipeline for storage to the database.

![Figure 15. News Web Scraping](image1)

![Figure 16. Job Vacancy Web Scraping](image2)

d) Tabulation

In this feature the user can view the news and job vacancies that have been saved. In the news tabulation, users can see a graph of the number of news for the month. In addition, users can see the amount of news on each website each day. News details can also be viewed by pressing the button. It is the same with job vacancy.
Figure 17. News Tabulation

Figure 18. Detail Table from News Tabulation
4. System Security

a) XSS Protection

XSS protection is done by sending variables from the server side to the client side. These variables are sent using double bracket in the django template. An example of its implementation can be seen in Figure 20. The data in question is marked using a red box. Toptag data will be taken from the django view and generated in the django template.

```html
<td>{{toptag.tag}}</td>
<td class="text-center">{{toptag.tag_count}}</td>
</tr>
</table>
```

Figure 20. Implementation XSS Protection

b) CSRF Protection

CSRF protection is done by adding secret code to each data form using the POST method. For examples of implementation, see Figure 21 which is marked with a red box. It appears that a variable named csrftoken needs to be added that contains the secret code of the CSRF. This CSRF code will be generated by the system automatically by the system to protect users.
c) SQL Injection Protection

Protection from SQL Injection can be done using queryset from django compared to using raw SQL. Examples of queryset usage can be seen in Figure 22. How to protect from SQL Injection is marked in the red box. The function in this red box is the same as counting all items in the Job table. By using queryset, data is safer from SQL Injection attacks.

```python
TopTagList = TagNews.objects.values('tag').annotate(jumlahLowongan=LowonganKu.objects.count(), jumlahPerusahaan=LowonganKu.objects.aggregate(jumlahPekerjaan), jumlahPelamar=LowonganKu.objects.aggregate(jumlahPelamar)).
return render(request, 'home.html', { 'topTagList': TopTagList })
```

Figure 22. SQL Injection Protection

5. System Evaluation

System Evaluation is done to test whether the functions made in the system are running well, and whether the system that is made is feasible to use. The method used for evaluating this system is the Black Box Testing, System Usability Scale (SUS) method and Comparison of Total Activity and Time.

a) Black Box Test

Black Box testing is a test conducted to see whether the output produced is as expected. Black Box testing does not pay attention to the processes that occur in the system. The results of the Black Box test can be seen in Appendix 14. The results of the black box indicate that the functions on the system are running well and produce results as expected.

b) Comparison of Total Activity and Time

<p>| User Activity in the System |</p>
<table>
<thead>
<tr>
<th>Working System</th>
<th>Time Estimation</th>
<th>Total</th>
<th>Proposed System</th>
<th>Time Estimation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening news site</td>
<td>30 seconds</td>
<td>30 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open the news link</td>
<td>@30 seconds</td>
<td>30 news X 30 seconds = 900 seconds</td>
<td>Web scraping news site*</td>
<td>@1 second</td>
<td>30 news x 1 second = 30 seconds</td>
</tr>
<tr>
<td>Copy Paste news into excel</td>
<td>@30 seconds</td>
<td>30 news X 30 seconds = 900 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compiling news</td>
<td>300 seconds</td>
<td>300 seconds</td>
<td>Download news that has been collected*</td>
<td>@5 seconds</td>
<td>6 sites X 5 seconds = 30 seconds</td>
</tr>
<tr>
<td>Skimming News to search related news</td>
<td>@120 seconds</td>
<td>30 news X 120 seconds = 360 seconds</td>
<td>Searching news*</td>
<td>2 seconds</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Opening jobs vacancy site</td>
<td>30 seconds</td>
<td>30 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open the job vacancy link</td>
<td>@30 seconds</td>
<td>30 job vacancy X 30 seconds = 900 seconds</td>
<td>Web scraping job vacancy site*</td>
<td>@1 second</td>
<td>30 job vacancy x 1 second = 30 seconds</td>
</tr>
<tr>
<td>Copy Paste job vacancy into excel</td>
<td>@30 seconds</td>
<td>30 job vacancy X 30 seconds = 900 seconds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compiling job vacancy</td>
<td>300 seconds</td>
<td>300 seconds</td>
<td>Download job vacancy that has been collected*</td>
<td>5 seconds</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Opening & Searching Index Google Trend site</td>
<td>60 seconds</td>
<td>60 seconds</td>
<td>Monitoring Index Google Trend*</td>
<td>5 seconds</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Opening & Searching Tweet and Trending Topic</td>
<td>60 seconds</td>
<td>60 seconds</td>
<td>Monitoring Tweet*</td>
<td>5 seconds</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Total Activity : 11</td>
<td>Total : 3840 seconds ~ 64 minutes</td>
<td>Total Activity : 7</td>
<td>Total : 107 seconds ~ 1.783 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*done by system

Table 2. The Compare of Total Activity and Time Difference between Working System and Proposed System for 1 user

From table 2, we can see that the comparison of total activity that has been done with working system is 11 activity, with the proposed system, there’s only 7 activity. The work force is reduced by 36.36%. There’s also a big time difference, with the working system we need 64 minutes but with the proposed system we only need around 2 minutes. That’s 96.87% time reduction. With the proposed system the business process hopefully be more effective and efficient.

IV. Conclusion

The conclusion that can be drawn from the research is that web scraping that has been implemented and integrated in the system has been running well. Users can use web scraping to retrieve news and job data. Then, the implementation of news search has gone well. Users can search news with certain keywords. Users can also filter to select news from certain websites and only certain dates. Google trend and twitter index data can be monitored through the system and has been running well.

The suggestion is that further news systems need to be added that are more complex, namely by using search algorithms such as TF-IDF. Hoax news and irrelevant news also need cleaning. Furthermore, it can be integrated with the Simple Web Solution Solution (WMSS) for deeper mining text analysis. Data from other social media such as Facebook and Instagram is also better collected.

Several Big Data for official statistics projects including this study have been communicated with the stake holders to get their feedbacks. Most of the appreciated the results. We also received valuable input and suggestion for further development.
V. References

Black Box Test

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Expected Result</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open the home page</td>
<td>Home page opens correctly</td>
<td>√</td>
</tr>
<tr>
<td>2</td>
<td>Choose news from certain sites</td>
<td>The previous news disappeared, replaced with news that had been choosen</td>
<td>√</td>
</tr>
<tr>
<td>3</td>
<td>Display top tags on the news</td>
<td>Top tags appear correctly</td>
<td>√</td>
</tr>
<tr>
<td>4</td>
<td>Displays a chart of the news total</td>
<td>The chart appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>5</td>
<td>Display the total of job vacancies</td>
<td>The total of job vacancies appear correctly</td>
<td>√</td>
</tr>
<tr>
<td>6</td>
<td>Display the number of application</td>
<td>The number of application appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>7</td>
<td>Display the total of company</td>
<td>The total of company appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>8</td>
<td>Display a chart of the city from job vacancies</td>
<td>The chart appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>9</td>
<td>Display a chart of the favorite company</td>
<td>The chart appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>10</td>
<td>Display Index Google Trend chart</td>
<td>The chart appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>11</td>
<td>Display Index Google Trend chart by provinces</td>
<td>The chart appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>12</td>
<td>Display related query</td>
<td>The query appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>13</td>
<td>Display the latest tweet</td>
<td>The tweet appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>14</td>
<td>Display Indonesian Trending Topic</td>
<td>The trending topic appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>15</td>
<td>The searched keyword found</td>
<td>The news and total of bews containing keywords will be displayed</td>
<td>√</td>
</tr>
<tr>
<td>16</td>
<td>The searched keyword is not found</td>
<td>A notification appears that the keyword is not found and asks the user to do a search again or do news scraping</td>
<td>√</td>
</tr>
<tr>
<td>17</td>
<td>Choose additional filters</td>
<td>The start and end dates appear for news sorting</td>
<td>√</td>
</tr>
<tr>
<td>18</td>
<td>Sort by date</td>
<td>Display news that sort by date correctly</td>
<td>√</td>
</tr>
</tbody>
</table>

Precondition: Users are in the monitoring feature

Precondition: Users do a news search
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Expected Result</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Precondition: Users are in the news tabulation feature

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Display a chart of the news by month</td>
<td>The chart appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>20</td>
<td>Display a daily table of total news</td>
<td>Each row will display a button with the name of the site and the amount of news on the site on that day</td>
<td>√</td>
</tr>
<tr>
<td>21</td>
<td>The user selects the site button</td>
<td>Users will be directed to details news</td>
<td>√</td>
</tr>
<tr>
<td>22</td>
<td>Pengguna mengganti bulan tabulasi</td>
<td>Update charts and news tabulation tables</td>
<td>√</td>
</tr>
<tr>
<td>23</td>
<td>Tabulations in that month do not have data</td>
<td>A notification appears that news is not found and asks the user to do web scraping</td>
<td>√</td>
</tr>
</tbody>
</table>

Precondition: Users are in the job vacancy tabulation feature

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Display a table of job vacancies</td>
<td>The table appears correctly</td>
<td>√</td>
</tr>
<tr>
<td>25</td>
<td>The user selects one of the job vacancies</td>
<td>A new tab appears which directs the job link</td>
<td>√</td>
</tr>
</tbody>
</table>

Precondition: Users are in the news web scraping feature

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>The user chooses a site to be scraping</td>
<td>A selection of sites will appear.</td>
<td>√</td>
</tr>
<tr>
<td>27</td>
<td>The user chooses the date for web scraping</td>
<td>Date selection appears</td>
<td>√</td>
</tr>
<tr>
<td>28</td>
<td>Users click on the news scraping start button</td>
<td>A process log will appear to show the scraping process. After scraping is complete, a button will appear to see the results</td>
<td>√</td>
</tr>
<tr>
<td>29</td>
<td>Users choose to see results</td>
<td>Users will be directed to news details</td>
<td>√</td>
</tr>
</tbody>
</table>

Precondition: Users are in the job vacancy web scraping feature

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>The user clicks on the scraping job button</td>
<td>A process log will appear to show the scraping process. After scraping is complete, a button will appear to see the results</td>
<td>√</td>
</tr>
</tbody>
</table>